

EVALUATION OF RANGE STANDARDS FOR UNDERWATER RADIATED NOISE MEASUREMENTS IN BEAM ASPECT

Hans Hasenpflug (DMO), Layton Gilroy (DRDC), Anton Homm (WTD 71), Stefan Schäl (WTD 71)

Introduction

 Data evaluation and analyses of a measurement trial with a small vessel at Heggernes sound range using different standards:

• The ISO 17208-1 (marine protection)

The STANAG 1136 (operational requirements)

 Both standards describe procedures for the determination of underwater Radiated Noise Levels.

Underwater Radiated Noise Level:

- ■Underwater Radiated Noise Level (RNL) is defined as the 1/3 Octave RMS Sound Pressure Level measured in the far field and normalized to a reference distance of 1 m by means of spherical propagation correction (20*log (R/R₀))
- The measured Radiated Noise Levels are influenced by Lloyd's mirror effect. It is caused by the pressure release surface reflection.

Standards

Procedure:

Standards

Specification:

Topic	ISO 17208	STANAG 1136	Heggernes
Number of hydrophones	3	1	3x3
Hydrophone depth	@ 15° = 27 m @ 30° = 58 m @ 45° = 100 m	Between 9 m - 36 m	H-up = 30 m H-mid = 62.5 m H-low = 95 m
Data Window Angle (<i>Data Window Length</i>)	± 30° (121 m)	± 45° (209 m)	± 15° (<i>56 m</i>)
Distance correction at CPA	Sea surface	Nearest point on the hull	Nearest point on the hull
COMEX Commence exercise	200 m before CPA		400 m before CPA
FINEX Finish exercise	200 m behind CPA		200 m behind CPA

Sound Range

Characteristics:

- Deepwater sound range (depth = 385 m)
- Situated in Herdla Fjord (width = 1200 m)
- Bottom fixed hydrophone lines (depth adjustable)
- Measure surface ships & submarines
- Low ambient noise level

Runs:

- Two operational conditions
 - 5 kts (below CIS)
 - 12 kts (above CIS)
- Two sailing directions
- ■Track deviation < 3 m</p>
- Small speed difference between east and west runs

	Heading	5 kts	12 kts	Hydrophone location	Aspect
		6 Runs	9 Runs (11.8 kts / 2.9 m)	North	Port
		(4.6 kts / 2.4 m)		South	Stbd
	West	7 Runs	10 Runs	North	Stbd
1		(5.9 kts / 1.9 m)	(12.4 kts / 2.3 m)	South	Port

Signal to noise ratio (100Hz-10kHz):

- Reproducible conditions and noise levels
- •Maximum levels inside all DWL's
- Sufficient signal to noise ratio (> 10 dB)

Underwater Radiated Noise Levels

Effect of aspect angle and heading:

Port and Stbd aspect levels are almost equal

West runs are faster and produce more noise in the higher frequency bands

Acoustic reference position:

Data Window Angle:

Standard	DWL (m)		
STANAG 1136	209		
ISO	121		
Heggernes	56		

Effect of Data Window Angle (DWA):

Effect of Hydrophone layout:

Effect of Hydrophone layout:

Effect of Hydrophone layout:

ISO – STANAG for 12 kts

ISO – STANAG for 12 kts Similar DWA

ISO – STANAG for **5** kts **Similar DWA**

Effect of Hydrophone layout:

Conclusions

- ■The Heggernes sound range has a hydrophone layout which complies with the specification of ISO 17208-1.
- A large DWL in relation to the length of the ship as specified by STANAG can lead to an underestimation of Radiated Noise Levels.
- •DWL should be related to the ship length, especially for small ships.
- ■The hydrophone layout specified by ISO is smoothing the Lloyd's mirror effect in a broad frequency range.
- ■Radiated noise levels measured with a single hydrophone at 30° are comparable with results of ISO using 3 hydrophones at different depths.