Estimating the radiated underwater noise of seagoing platforms: The physics behind signal analytic approaches

Carsten Zerbs, Andreas Müller, Ingmar Pascher Müller-BBM, Hamburg and Planegg (near Munich)

Introduction

- Modelling the acoustic signature of ships requirements, assumptions for different tasks.
- Two examples:
 - UWRN predictions in the (early) design phase
 - Calculating estimates of the acoustic signature
- In both examples, assumptions and simplifications must be made
 - Data reduction
 - Simple description of the source, transfer behaviour and radiation
 - Minimization of the number of measurement positions
 - **...**

Underwater Noise Prediction Techniques

- Underwater noise predictions of the underwater radiated noise of ships are required in different project phases.
- Design stage for new ships
 - Prediction of underwater radiated noise based on
 - Relatively sparse information on:
 - Machinery
 - Ship structure: foundation, hull design, ...
 - Noise insulation: elastic decoupling of machinery, acoustic insulation
- Operational phase
 - Calculated estimates of the current signature, based on measurement: SBN of noise source
- Predictions in both phases require some assumptions and simplifications, but ...

Typical situation

Noise sources on vessels

- (Diesel-) generators
- Propulsion motor
- Auxiliary equipment (hydraulic compressors, cooling compressors pumps, ...)
- AC
- Propeller, other drives (pump jet, ...)
- Fluid-structure-coupling excitation of ship structure by fluid / flow

Acoustic requirements

System requirements	according to	Standards, regulations (examples)	Objectives
Airborne noise (Noise level in rooms)	Standards, regulations, specification	BV 0450 (2003) STANAG 4294, IMO, (MIL-STD 740-1)	Workplace safety speech intelligibility recreation
Vibrations	Standards, regulations, specification	ISO 6954 (2000) (MIL-STD 740-2)	Workplace safety Comfort
Target level	Navy (specifications), regulations	ICES 209	min. detection range, Safety of crew and ship, objects of protection
Sonar self noise	Manufacturer / navy		Signal-noise-ration of sonar system

70 67 dB

60 50 dB

50 dB

33 dB

1000 10000 100000

Frequenz/Hz

Figure 22. Proposed underwater radiated noise specification at 11 knots free-running for all vessels used in fisheries research.

Design Phase Requirements on Noise Prediction

Requirements on predictions during design phase

Accuracy

- Depending on the project phase, at least to a certain extent
- It is important, that differences between variants are considered accurately (relative accuracy – improvements and degradation)
 - For example, the early design phase, sound insulating measures have to be configured and compared

Flexibility

- Simple setup
- If input data is not available, a data base of typical variants is required (noise sources, impedances, mounting elements, ..., radiation efficiencies)
- Fast calculation. For the assessment of variants, quick repetition of calculation for modifications is required
- Allows integration of new results (e. g. results from numerical simulations of sub-structures, results from test stands, ...

Classification of noise sources and propagation paths

Early-design-phase prediction models

- Required properties for the description of sound generation and sound propagation
 - Properties of noise sources: source impedance, "source levels"
 - Transfer properties
- Simplifications
 - Calculation in the spectral domain, but
 - Input data (source spectra) and transfer functions are given in 1/3rd octave bands
 - No phase dependency is considered
 Calculations: transfer behaviour as level difference, superposition of contributions as level sum (energetic addition)
 - Models are restricted to the description of sound propagation via the *primary* (or main) paths, i. e. from the noise source via mounting, the ship structure and the hull into the surrounding water
 - Secondary (cross-) paths are often neglected

Early-design-phase prediction models

- Semi-empirical models are applied: measurement data is combined with
 - experimental data
 - or "typical data"
 - Typical transfer functions
 - Insulation of an elastic mounting described as level difference
 - Input an transfer impedance level difference
 - Propagation loss in the structure
 - Radiating area
 - Radiation efficiency
 - Transfer functions which are sometimes neglected in the early design phase
 - Secondary paths: pipelines, canal, hoses, cabling

Example: source and transfer properties

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

Source and transfer properties have to be considered in 3 dimensions

1 DOF oscillator $m\ddot{x} + c\dot{x} + kx = F(t) = F_0 e^{j\omega t}$

$$\frac{v_{1}}{v_{Fd}} = \frac{Z_{Spr} + Z_{Fd}}{Z_{Spr}} = 1 + \frac{Z_{Fd}}{Z_{Spr}}$$

$$Z_{Fd} \gg Z_{Spr}$$
 $\frac{V_1}{V_{Fd}} \approx \frac{Z_{Fd}}{Z_{Spr}}$

Transfer stiffness of spring elements

 With the definition of the impedance, the velocity of the foundation becomes

$$V_{\text{Fd}} = \frac{\tilde{F}_{\text{out}}}{Z_{\text{Fd}}} = V_1 \cdot \frac{s_{\text{dyn}} / \omega}{Z_{\text{Fd}}}$$

$$\frac{v_{Fd}}{v_1} \approx \frac{Z_{Sp}}{Z_{Fd}} \ll 1$$

- The ratio of s_{dyn}/ω is also defined as an impedance quantity (*dyna-mic transfer spring impedance*)
- The dynamic spring stiffness s_{dyn} is available for many elastic elements (e. g. in manufacturer catalogue)

Dynamic Stiffness

Willbrandt KG Hannover Schockdämpfer SES 5010, 45 Shore (A)

Transfer impedance (to hull)

Input impedance (foundation)

Radiation efficency

 The radiated underwater noise caused by hull vibration is

$$p^2 = (\rho \cdot c)_W^2 \cdot \sigma \cdot \frac{S_R}{S_M} \cdot V$$

 S_R = radiating area S_M = measuring area

 The radiation efficiency can be taken from tables or estimated via rules of thumb Example: I = 0.45 m (frame distance) d = 25 mm (hull thickness)

Simplified URN prediction model

Signature Monitoring Requirements on Noise Estimates

Monitoring of the acoustic signature of ships

- Real-time-monitoring the acoustic signature of ship means calculating an (online-) prediction of the radiated UWN
- Different signal analytic methods and algorithms algorithms were investigated and implemented (only to mention some keywords).
 - Principal Component Analysis (PCA),
 "Classical" Transfer Path Analysis
 Operational Transfer Path Analysis (OTPA),
 Energetic Transfer Path Analysis (ETPA)
- Implementation of the prediction model required several steps
 - Calibration measurements: simultaneous measurement of excitation (on board) and signature, typical: Heggernes test trial
 - Data adjustment (lab)
 - Building the model, implementing on the on-board measurement system

(O) TPA – motivation, application, goals

System analysis for

- Troubleshooting
- Product planning
- Quality assurance
- Sound design
- System characterization
- Contribution analysis

- Possible application:
- Automotive acoustics
 - Interior noise
 - Exterior noise
- Rail vehicles
- Agricultural engines
- Ships

Some aspects of classic TPA: transfer functions

In operation:

Simultaneous excitation of all forces

FRF measurement

- Single replacement force f_i a position
 Response p has no other source
- Excitation by hammer or shaker
- All positions measured subsequently

Measurements at the isolated system

- All other forces have to be zero
- To avoid crosstalk between adjacent measurement positions

Indirect estimation of operational forces

Matrix inversion

- Measurement of "indicator" or interface accelerations in operation
- Measurement of all transfer functions $H_{a/f} = \{a_i/f_i\}$
- Inversion of the accelerance matrix

$$\boldsymbol{H}_{a/f}^{-1} = \begin{bmatrix} a_1/f_1 & a_1/f_2 & \dots & a_1/f_n \\ a_2/f_1 & a_2/f_2 & \dots & a_2/f_n \\ \vdots & \ddots & \vdots \\ a_m/f_1 & a_m/f_2 & \dots & a_m/f_n \end{bmatrix}^{-1}$$

Classical TPA, matrix inversion

Summary

- Indirect estimation of interface forces
- Very time-consuming
- Multi-stage determination of sound contributions. High complexity → prone to errors
- Transfer functions do not describe actual operation
- But: method also provides the interface forces suitable for comparison with simulation

Operational TPA

Indirect estimation of operational forces at "indicator positions"

Sound contributions for indicatorpositions

Calculation of path contributions from operational measurements

Requirements

- Multiple, different excitations
- Suitable "path indicators" (intefaces)

24

Mathematical concept of the operational TPA

Source and response signals in operation

Linear system $P = A \cdot H$

Variation of excitation

Solution of the linear system by PCA (principal component analysis)

A⁻¹: pseudo-inverse of A

Source spectra A, target spectra P, transfer functions H measurement steps (spectra), parameter time:

→ measurement positions:

e.g. 7 e.g. 5

Signal analytic model from OTPA

Capture sound contributions for different operating condition, for internal (acceleration sensors) or external receivers (hydrophones). Only operational data required.

Capturing operational measurement data for ships

OTPA data:

- Realistic data can only be measured in operation (propeller, propulsion, flow noise)
- Data must be measured with two different systems (sources on ship, hydrophone(s) as receiver
- Measurement of test range (Aschau, Heggernes)
- Measurement with floating receiver (hydrophones on buoy)
- Post-processing: synchronization of data sets

28

-8.688

Deep water measurements

Single hydrophone or hydrophone array Synchronization of data based on GPS data or information from pinger signal (transit time)

Some results

Datensatz DS 1: 3P9B2 Sensors: Array (16) Modell aus DS 1,2,5,6,7

$$p_{\text{pred}}(f) = \sum_{n=1}^{N} H_n(f) \cdot a_n(f)$$

Datensatz DS 2: 3P6B3 Sensoren: Array (16) Model aus DS 1,2,5,6,7

$$\left| \boldsymbol{p}_{\text{energetic}}(f) \right|^2 = \sum_{n=1}^{N} \boldsymbol{w}_n(f) \cdot \left| \boldsymbol{a}_{\text{n}}(f) \right|^2$$

OTPA for ships: requirements and simplifications

- To reduce the complexity of the measurement sensor network, single sources are typically covered by only one (or two) sensors (assumption: excitation is coherent for sensor positions)
- Models should be constructed only for similar stages of sound propagation, e. g.
 - Sources UWN
 - Sources Hull monitoring of sound transfer
 - Hull UWN

- To measure flow noise, measurement positions (MP) on the hull are required
- MP on the hull should also cover the influence of
 - all relevant on-board noise sources
 - Propeller noise (may be also measured on the thrust bearing or by external sensors)
 - Rudders
- Therefore the design of a sensor network should be carefully planned

Properties of acoustic ship signature monitoring

- Properties and restrictions of the OTPA (and of signature monitoring)
 result from the facts
 - that a signal analytic approach is used
 - and that the number of sensors applied has to be restricted
 - system description by FRFs is restricted by the operating excitations and responses are used
- Physical properties of sound transfer "collapse" in transfer functions
 - For a detailed analysis of a system or troubleshooting, additional concepts from the classical TPA might be required

Possible improvements

- Many noise sources generate only at single frequencies: equipment running at fixed operational speed(s). The signature consists in frequency lines, rpm and harmonics
- The transfer behaviour source to receiver can only be calculated at these frequencies.
 Workarounds are considered:
- Measure equipment during starting phase (forced run-up)
- Apply additional external excitation, e. g. by shaker or impact hammer

• Investigated in a Master's theses at MBBM (Lucas Heidemann, Investigations on operational transfer path analysis in combination with additional artificial excitation by the use of a physical model)

Summary

- Predictions for the underwater radiated noise of ships
- Some concepts for different project stages and phase
 - Design phase
 - Monitoring
- Have different advantages and limitations

MÜLLER-BBM

Thank you for your attention

www.MuellerBBM.de