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 Modelling the acoustic signature of ships – requirements, assumptions 
for different tasks.

 Two examples:
 UWRN predictions in the (early) design phase
 Calculating estimates of the acoustic signature

 In both examples, assumptions and simplifications must be made
 Data reduction
 Simple description of the source, transfer behaviour and radiation
 Minimization of the number of measurement positions
 …

Introduction
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 Underwater noise predictions of the underwater radiated noise of ships 
are required in different project phases. 

 Design stage for new ships
 Prediction of underwater radiated noise based on
 Relatively sparse information on:

 Machinery
 Ship structure: foundation, hull design, …
 Noise insulation: elastic decoupling of machinery, acoustic 

insulation
 Operational phase

 Calculated estimates of the current signature, based on 
measurement: SBN of noise source

 Predictions in both phases require some assumptions and 
simplifications, but …

Underwater Noise Prediction Techniques 



Noise sources on vessels
 (Diesel-) generators
 Propulsion motor 
 Auxiliary equipment (hydraulic 

compressors, cooling 
compressors pumps, …) 

 AC
 Propeller, other drives 

(pump jet, …)
 Fluid-structure-coupling –

excitation of ship structure by 
fluid / flow

Typical situation

17.10.2019 Estimating UWRN 4

Noise radiation

source 
level

level at 
interfaces

Noise level 
on the hull 

noise 
insulation

noise propagation 
(damping and 
propagation loss) 



Acoustic requirements
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System 
requirements

according to Standards, regulations
(examples)

Objectives

Airborne noise
(Noise level in 
rooms)

Standards, regulations, 
specification

BV 0450 (2003)
STANAG 4294, IMO, 
(MIL-STD 740-1)

Workplace safety
speech intelligibility
recreation

Vibrations Standards,  
regulations, 
specification

ISO 6954 (2000)
(MIL-STD 740-2)

Workplace safety
Comfort

Target level Navy (specifications), 
regulations

ICES 209 min. detection range, Safety of crew 
and ship, objects of protection

Sonar self noise Manufacturer / navy Signal-noise-ration of sonar system



Design Phase
Requirements on Noise Prediction
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 Accuracy
 Depending on the project phase, at least to a certain extent
 It is important, that differences between variants are considered 

accurately (relative accuracy – improvements and degradation)
 For example, the early design phase, sound insulating measures 

have to be configured and compared
 Flexibility

 Simple setup
 If input data is not available, a data base of typical variants is 

required (noise sources, impedances, mounting elements, …,  
radiation efficiencies)

 Fast calculation. For the assessment of variants, quick repetition of 
calculation for modifications is required

 Allows integration of new results (e. g. results from numerical 
simulations of sub-structures, results from test stands, …

Requirements on predictions during design phase 



Classification of noise sources and propagation paths
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 Required properties for the description of sound generation and sound 
propagation
 Properties of noise sources: source impedance, “source levels”
 Transfer properties

 Simplifications
 Calculation in the spectral domain, but
 Input data (source spectra) and transfer functions are given in 1/3rd

octave bands 
 No phase dependency is considered

Calculations: transfer behaviour as level difference, superposition of 
contributions as level sum (energetic addition)

 Models are restricted to the description of sound propagation via 
the primary (or main) paths, i. e. from the noise source via mounting, 
the ship structure and the hull into the surrounding water

 Secondary (cross-) paths are often neglected 

Early-design-phase prediction models 
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 Semi-empirical models are applied: measurement data is combined with 
 experimental data
 or “typical data”
 Typical transfer functions

 Insulation of an elastic mounting – described as level difference
 Input an transfer impedance – level difference
 Propagation loss in the structure

 Radiating area
 Radiation efficiency

 Transfer functions which are sometimes neglected in the early 
design phase
 Secondary paths: pipelines, canal, hoses, cabling

Early-design-phase prediction models 
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Example: source and transfer properties
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source

receiver
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Zr receiver impedance
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 With the definition of the 
impedance, the velocity of the 
foundation becomes

 The ratio of sdyn/ω is also defined 
as an impedance quantity (dyna-
mic transfer spring impedance)

 The dynamic spring stiffness sdyn
is available for many elastic 
elements (e. g. in manufacturer 
catalogue)

Transfer stiffness of spring elements
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Input impedance 
(foundation)

Transfer impedance 
(to hull)



 The radiated underwater noise 
caused by hull vibration is

SR   = radiating area
SM = measuring area

 The radiation efficiency can 
be taken from tables or 
estimated via rules of thumb

Radiation efficency
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( )22 R
W

M

Sp c v
S

ρ σ= ⋅ ⋅ ⋅ ⋅

-21dB at ~250HZ

Example: l = 0.45 m (frame distance)
d = 25 mm (hull thickness)



Simplified URN prediction model
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Signature Monitoring
Requirements on Noise Estimates
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 Real-time-monitoring the acoustic signature of ship means calculating 
an (online-) prediction of the radiated UWN

 Different signal analytic methods and algorithms algorithms were 
investigated and implemented (only to mention some keywords). 
 Principal Component Analysis (PCA),

“Classical” Transfer Path Analysis
Operational Transfer Path Analysis (OTPA), 
Energetic Transfer Path Analysis (ETPA)

 Implementation of the prediction model required several steps
 Calibration measurements: simultaneous measurement of excitation 

(on board) and signature, typical: Heggernes test trial
 Data adjustment (lab)
 Building the model, implementing on the on-board measurement 

system

Monitoring of the acoustic signature of ships



System analysis for
 Troubleshooting 
 Product planning
 Quality assurance
 Sound design
 System characterization
 Contribution analysis

(O) TPA – motivation, application, goals

 Possible application: 
 Automotive acoustics

 Interior noise
 Exterior noise

 Rail vehicles
 Agricultural engines 
 Ships
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In operation:
 Simultaneous excitation of all forces

FRF measurement
 Single replacement force fi a position 

I
Response p has no other source

 Excitation by hammer or shaker
 All positions measured subsequently
 Hi = p/fi [Pa/N]

Measurements at the isolated system
 All other forces have to be zero
 To avoid crosstalk between adjacent 

measurement positions

Some aspects of classic TPA: transfer functions
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fi pi P
Hp/f Σpi

B
𝒇𝒇1

𝒇𝒇2 𝒇𝒇3 𝒇𝒇4
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𝒑𝒑

𝒇𝒇1
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Matrix inversion
 Measurement of “indicator” or interface 

accelerations in operation
 Measurement of all transfer functions 

Ha/f={aj/fi}
 Inversion of the accelerance matrix

Indirect estimation of operational forces
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Summary
 Indirect estimation of interface forces
 Very time-consuming
 Multi-stage determination of sound 

contributions. High complexity → 
prone to errors

 Transfer functions do not describe 
actual operation

 But: method also provides the 
interface forces suitable for 
comparison with simulation

Classical TPA, matrix inversion
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Calculation of path contributions from 
operational measurements
Requirements
 Multiple, different excitations
 Suitable “path indicators” (intefaces)

Operational TPA
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Mathematical concept of the operational TPA

17.10.2019 Estimating UWRN 25





























=























⋅





























7

6

5

4

3

2

1

5

4

3

2

1

7574737271

6564636261

5554535251

4544434241

3534333231

2524232221

1514131211

P
P
P
P
P
P
P

H
H
H
H
H

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Source spectra A, target spectra P, transfer functions H
↓ measurement steps (spectra), parameter time: e.g. 7
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e
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Variation of 
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linear system by 
PCA (principal 
component 
analysis)

A-1: pseudo-inverse 
of A



Signal analytic model from OTPA
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Capture sound contributions for different operating condition, for internal 
(acceleration sensors) or external receivers (hydrophones). Only operational 
data required.

structure borne contributions: sources

engine

propulsion

generators

sea cooling

….

auxiliaries

refrigeration

receiver (hydrophone) in far field

converters
hull

Source: internet



OTPA data:
 Realistic data can only be 

measured in operation (propeller, 
propulsion, flow noise)

 Data must be measured with two 
different systems (sources on 
ship, hydrophone(s) as receiver

 Measurement of test range 
(Aschau, Heggernes)

 Measurement with floating 
receiver (hydrophones on buoy)

 Post-processing: synchronization 
of data sets

Capturing operational measurement data for ships
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Deep water measurements
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Ship is passing a floating buoy.



Some results
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 To reduce the complexity of the 
measurement sensor network, 
single sources are typically 
covered by only one (or two) 
sensors (assumption: excitation 
is coherent for sensor positions)

 Models should be constructed 
only for similar stages of sound 
propagation, e. g.
 Sources – UWN
 Sources – Hull

monitoring of sound transfer 
 Hull – UWN

OTPA for ships: requirements and simplifications

 To measure flow noise, measure-
ment positions (MP) on the hull 
are required

 MP on the hull should also cover 
the influence of 
 all relevant on-board noise 

sources
 Propeller noise (may be also 

measured on the thrust 
bearing or by external 
sensors)

 Rudders
 Therefore the design of a sensor 

network should be carefully 
planned
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 Properties and restrictions of the OTPA (and of signature monitoring) 
result from the facts
 that a signal analytic approach is used
 and that the number of sensors applied has to be restricted
 system description by FRFs is restricted by the operating excitations 

and responses are used 
 Physical properties of sound transfer “collapse” in transfer functions

 For a detailed analysis of a system or troubleshooting, additional 
concepts from the classical TPA might be required

Properties of acoustic ship signature monitoring



 Many noise sources generate 
only at single frequencies: 
equipment running at fixed 
operational speed(s). The 
signature consists in frequency 
lines, rpm and harmonics

 The transfer behaviour source to 
receiver can only be calculated at 
these frequencies. 
Workarounds are considered:

 Measure equipment during 
starting phase (forced run-up)

 Apply additional external 
excitation, e. g. by shaker or 
impact hammer

Possible improvements

 Investigated in a Master’s theses 
at MBBM (Lucas Heidemann, 
Investigations on operational 
transfer path analysis in 
combination with additional 
artificial excitation by the use of 
a physical model)
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 Predictions for the underwater radiated noise of ships 
 Some concepts for different project stages and phase

 Design phase
 Monitoring

 Have different advantages and limitations

Summary 
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Thank you for your attention
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