

On the efficient use of the hierarchical matrix BEM for target echo strength simulations

B. Dilba, M. Markiewicz, O. von Estorff

<u>Content:</u>		Target Echo	Strength
-----------------	--	--------------------	----------

- BEM exterior problem
- Fast BEM H-Matrix compression
- BeTSSi TES simulation
- Solution strategies
- Field point evaluation

October 17-18, 2019 DEGA Workshop on Underwater Acoustics - Bad Honnef www.novicos.de

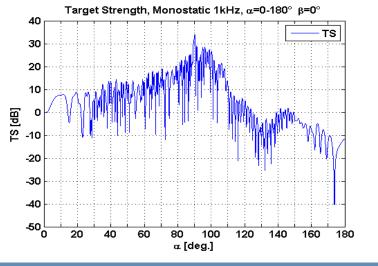
October 17-18, 2019

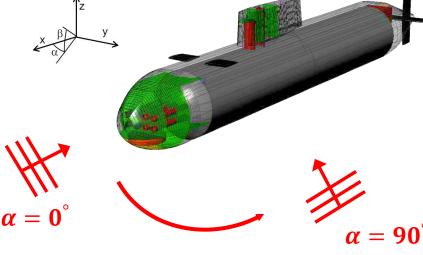
Target Echo Strength (TES)

- TES is a measure of an object's ability to return an echo
- Defined by the backscattered acoustic pressure due to an impinging wave
- Crucial design parameter for submarines
- Understanding of the TES properties is very important at early stages of development

→ numerical methods (today: BEM)

Submarine model of **B**enchmark **T**arget **S**trength **Si**mulation (BeTSSi) workshop, organized by WTD71 (2014), DRDC, TNO (2016)





2

BEM - exterior acoustic problem Governing equations

• Helmholtz equation with Neumann b.c. (q on $\partial \Omega$)

$$\begin{array}{ll} \Delta p(\mathbf{x}) + k^2 p = 0 & \mathbf{x} \in \Omega \\ & \frac{\partial p(\mathbf{x})}{\partial n(\mathbf{x})} = q(\mathbf{x}) & \mathbf{x} \in \partial \Omega \\ & \frac{\partial p}{\partial r} - ikp = 0 & r \to \infty \text{ (Sommerfeld radiation condition)} \end{array}$$

• Transformation to *Kirchhoff-Helmholtz* Boundary Integral equation (BIE):

$$c(x)p(x) + \int_{\partial\Omega} \frac{\partial G(x,y)}{\partial n(y)} p(y) \partial \Omega(y) = -\int_{\partial\Omega} G(x,y) \frac{\partial p(y)}{\partial n(y)} \partial \Omega(y) \qquad x \in \partial\Omega$$

• Discrete Boundary Integral equations (frequency dependent):

$$\left(\frac{1}{2}I + K\right)p = Vq \quad (CBIE) \qquad \qquad \left(\frac{1}{2}I - K'\right)q = -Dp \quad (HBIE)$$

Solve: $p = \left(\frac{1}{2}I + K\right)^{-1}Vq \quad \text{or} \quad p = -D^{-1}\left(\frac{1}{2}I - K'\right)q$
 \Rightarrow singular for some k (\rightarrow irregular frequencies)

BEM - exterior acoustic problem Regularisation

• Direct Combined Field Integral Equation (DCFIE):

$$\left(\frac{1}{2}\mathbf{I} + \mathbf{K} - \boldsymbol{\alpha}\mathbf{D}\right)\mathbf{p} = \left(\mathbf{V} - \boldsymbol{\alpha}\left(\frac{1}{2}\mathbf{I} - \mathbf{K}'\right)\right)\mathbf{q}$$

choice of α :

uniquely solvable for all real valued k if:

 $\Im \mathfrak{m}(\boldsymbol{\alpha}) \neq 0$

(Burton and Miller (BM))

- optimal with respect to the condition number:

$$\alpha = \frac{1}{k}$$

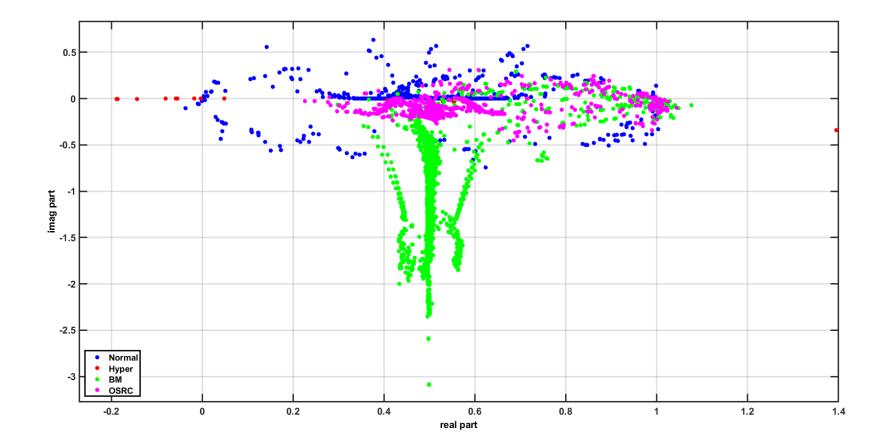
(<u>Kress</u>)

- ideal in terms of eigenvalue clustering:

 $\alpha = NtD \text{ (Neumann-to-Dirichlet) from Calderón Identity}$ $NtD = D^{-1} \left(\frac{1}{2}I - K'\right) \rightarrow -NtDD = \left(\frac{1}{2}I - K\right) \text{ with } K'D = DK$ $\Rightarrow \left(\frac{1}{2}I + K - NtDD\right) = I$ $\Rightarrow \alpha = NtD \approx \frac{1}{ik} \left(1 + \frac{\Delta_{\Gamma}}{k_{c}^{2}}\right)^{-1/2} \text{ <u>On Surface Radiation Condition (OSRC)}</u>$

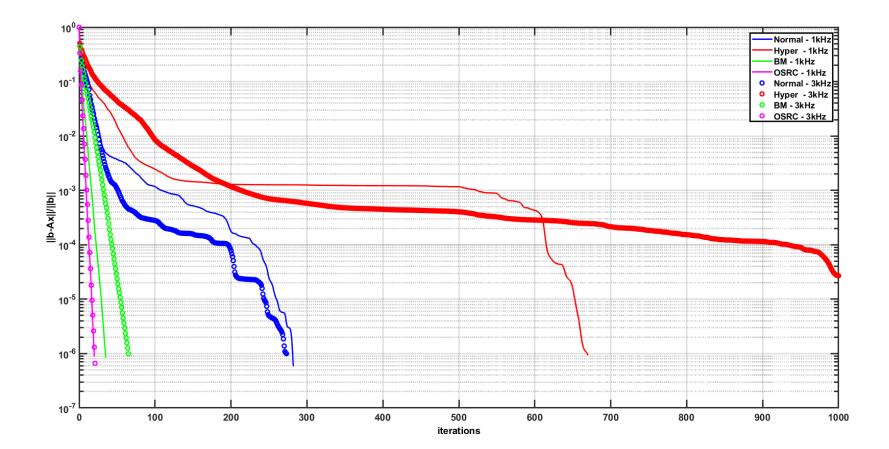
- Efficient preconditioner for iterative solvers e.g. GMRES (faster convergence)
- physical coordinates p and q are maintained.

BEM - exterior acoustic problem Effect of regularisation (Cat's eye)



October 17-18, 2019

BEM - exterior acoustic problem Convergence of GMRES (Cat's eye)



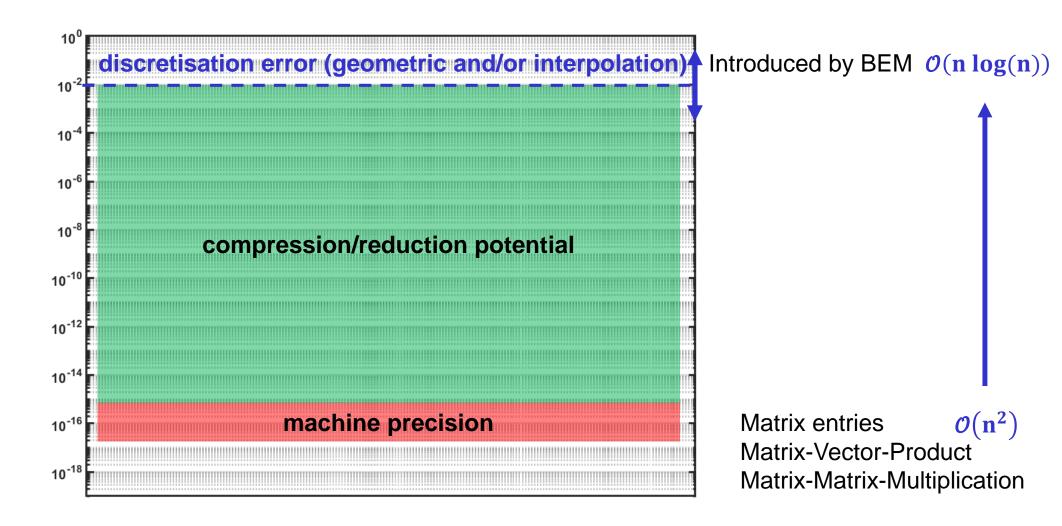
October 17-18, 2019

Fast BEM - H-Matrix compression Motivation

- Exterior BEM problems for large scale structures lead to large scale problems.
 - $n = 7.9 \times 10^6$ DOFs: Submarine (length 60m) at 10kHz
 - Standard BEM requires 908TB Memory $O(n^2)$, ... solution time $O(mn^2 n^3)$
- Matrix compression techniques reduce the overall complexity
 - FMM, H²- and <u>H-Matrix</u> lead to $O(n \log(n))$ for arithmetic operations, e.g. MVP
 - Hardware acceleration with GPUs (setting up the system matrix)
 - Plane wave approach for high frequencies FMM and directional H²-Matrix (DH²)
 - Exploiting properties of the surface
 - .
- Efficient solution process becomes more and more important, especially for large scale problems with high MVP-costs
 - Direct solution with hierarchical LU or LDL^{T} (only for many right hand sides)
 - Improving convergence behaviour of iterative solvers (e.g. GMRES)
 - Construction of preconditioners (<u>algebraic</u>, <u>analytic</u>)
- Improvements for TES-Simulation with the H-Matrix BEM approach

Fast BEM - H-Matrix compression

Basic idea – approximation of arithmetic operations (MVP,MM)



Fast BEM - H-Matrix compression Assembly procedure

Hierarchical Matrix

1. Index cluster Tree: T₁

Hierarchical clustering of matrix index set according to *principal component analysis (pca)*

2. Block cluster tree: $T_{I \times I} = T_I \times T_I$

Matrix partition P generated by checking the admissibility condition for row and col clusters X_t and X_s :

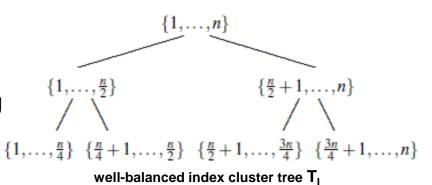
 $\min\{\operatorname{diam}(X_t), \operatorname{diam}(X_s)\} \leq \eta \operatorname{dist}(X_t, X_s)$

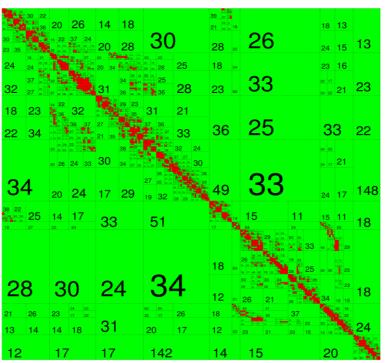
3. Block approximation

If the admissibility condition is fulfilled the admissible matrix block can be approximated by a **low rank** matrix

$$A = \sum_{i=1}^{l} u_i v_i^H = UV^H$$

Otherwise the block has to be calculated and stored as dense matrix block





low rank approximation of dense matrix for asymptotical smooth kernel function

Fast BEM - H-Matrix compression Block approximation, frequency dependency

• Approximation of kernel function $\kappa(x, y)$ by truncated series expansion

$$\kappa(\mathbf{x},\mathbf{y}) = \sum_{\nu=1}^{t} \varphi_{\nu}(\mathbf{x})\varphi_{\nu}(\mathbf{y}) + \mathbf{R}_{k}(\mathbf{x},\mathbf{y})$$

- approximation costs of matrix block depend on separation rank l
- ideal: exponential decay of error term $R_k(x, y)$
- exponential decay of error term is given for Laplace kernel $\kappa(x, y) = \frac{1}{4\pi r}$ if

$$R_{k}(x,y) = C_{1}\eta^{l} \rightarrow \frac{\min(\operatorname{diam}(X_{t}),\operatorname{diam}(X_{s}))}{\operatorname{dist}(X_{t},X_{s})} \leq \eta$$

- exponential decay of error term is given for Helmholtz kernel $\kappa(x, y) = \frac{1}{4\pi r} e^{-ikr}$ if

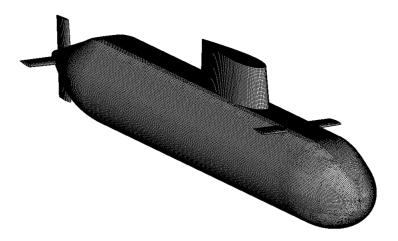
$$R_{k}(x, y) = C_{2}\eta_{k}^{l} \rightarrow (1 + \mathbf{k} \cdot \operatorname{dist}(X_{t}, X_{s})) \frac{\min(\operatorname{diam}(X_{t}), \operatorname{diam}(X_{s}))}{\operatorname{dist}(X_{t}, X_{s})} \leq \eta_{k}$$

- Problems in the high-frequency range ($k^*diam(\Gamma) >> 1$)
 - separation rank *l* depends linear on k \rightarrow block ranks as well $(l \sim k)$
 - admissable blocks getting smaller and smaller → Matrix compression less efficient, memory costs increase

October 17-18, 2019

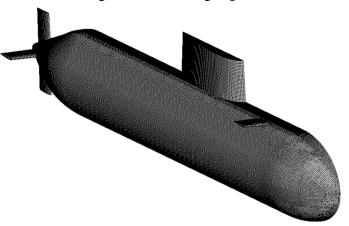
BeTSSi TES simulation Model parameters

• 10 Elements/ λ



Frequency	n (DOFs)	k	ka
1kHz	115.738	4.2	252
3kHz	893.140	12.6	756
5kHz	1.980.562	20.9	1254

symmetry plane leads to block symmetric matrix structure:



$$A = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix}$$

⇒ Compression of 50% (time & memory)

BeTSSi TES simulation Solution procedure

BEM TES calculation (sound hard)

$$\left(\frac{1}{2}\mathbf{I} + \mathbf{K} - \boldsymbol{\alpha}\mathbf{D}\right)\mathbf{p} = \mathbf{p}_{i}^{inc} - \boldsymbol{\alpha}\mathbf{q}_{i}^{inc}$$
 $\boldsymbol{\alpha} = \mathbf{i}/\mathbf{k}$ or NtD

Each incident plane wave i leads to a RHS

• <u>Monostatic:</u>

$$\text{TES} = 20 \text{log}_{10} \left(\frac{|\textbf{r}_j - \textbf{r}_0| \textbf{p}_{\text{scat}}^j}{\textbf{p}_{\text{inc}}^i} \right)$$

- $\underline{\text{Multiple}} \text{ RHS } (\mathbf{j} = \mathbf{i})$
 - 0°-180° \Rightarrow 1800 ($\Delta \alpha_i = 0.1^\circ$)
- Single field point evaluation
- Reduction of RHS by QR decomposition
 - 1kHz: 1800 => 125 (ε = 10⁻⁵)
 - 3kHz: 1800 => 321 (ε = 10⁻⁵)

Bistatic:

$$TES = 20\log_{10}\left(\frac{|\mathbf{r}_{j} - \mathbf{r}_{0}|\mathbf{p}_{scat}^{j}}{\mathbf{p}_{inc}^{i}}\right)$$

- $\underline{\text{Single}} \text{ RHS } (j \neq i)$
- <u>Multiple</u> field point evaluation p_{scat}^{j}
 - $0^{\circ}-360^{\circ} \Rightarrow 3600 \ (\Delta \alpha_j = 0.1^{\circ})$

BeTSSi TES simulation Iterative solution strategies

Acceleration of GMRES solver for the Helmholtz BEM

_	Deflated GMRES
	variants (restart)
_	Damping of small
	eigenvalues

(improvement of eigenvalue clustering) e.g. Subspace Recycling

MVP-based

 Regularization (BM, OSRC)

 Operator preconditioning

- Preconditioning
- Approximation of the inverse system matrix (e.g. LU-Factorization of low precision: H-LU)

analytic approach

algebraic approach

BeTSSi TES simulation

Iterative solution strategies

BM – no precond.

– System matrix

$$\mathbf{A} = \begin{pmatrix} \frac{1}{2}\mathbf{I} + \mathbf{K} - \frac{\mathbf{i}}{\mathbf{k}}\mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_2 & \mathbf{A}_1 \end{pmatrix}$$

• 50% memory & time reduction

BM – HLU-precond.

- System matrix

$$A = \left(\frac{1}{2}I + K - \frac{i}{k}D\right) = \begin{pmatrix}A_1 & A_2\\A_2 & A_1\end{pmatrix}$$

• no memory & time reduction

- Preconditioner,
$$\delta = 10^{-1}$$

P = L _{δ} U _{δ} \approx A

BM – Block Jacobi HLU-precond.

– System matrix

$$\mathbf{A} = \begin{pmatrix} \frac{1}{2}\mathbf{I} + \mathbf{K} - \frac{\mathbf{i}}{\mathbf{k}}\mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_2 & \mathbf{A}_1 \end{pmatrix}$$

- 50% memory & time reduction
- Preconditioner, $\delta = 10^{-1}$

$$L_{\delta}U_{\delta} \approx A_{1} \qquad P = \begin{pmatrix} L_{\delta}U_{\delta} & \\ & L_{\delta}U_{\delta} \end{pmatrix}$$

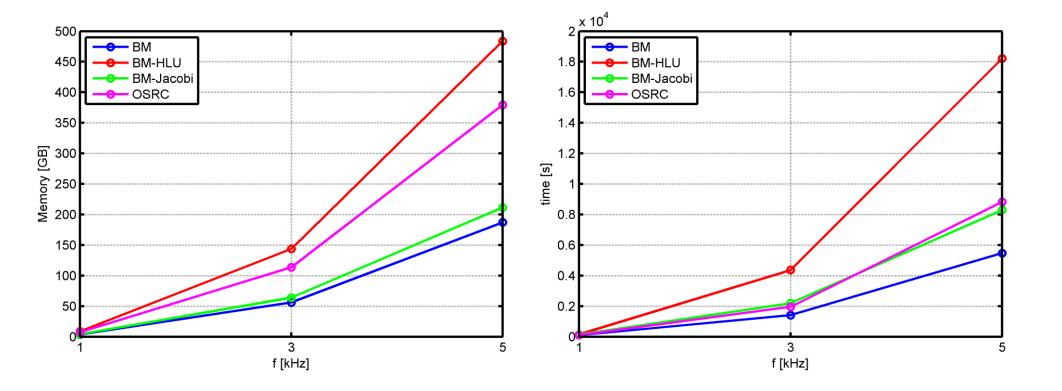
OSRC – Operator precond.
 System matrix
 Ã = A + B

$$A = \begin{pmatrix} \frac{1}{2}I + K \end{pmatrix} = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix}$$
$$B = (NtDD) = \begin{pmatrix} B_1 & B_2 \\ B_2 & B_1 \end{pmatrix}$$
$$\bullet \text{ no memory & time reduction}$$
$$- Preconditioner$$

NtD

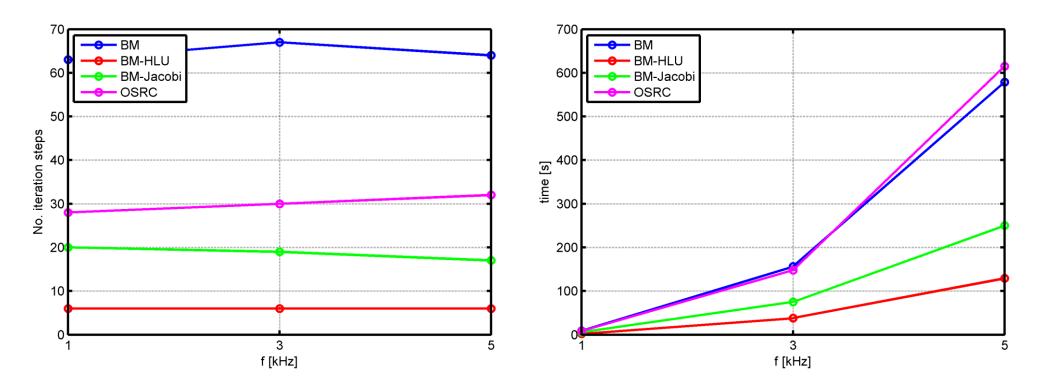
BeTSSi TES simulation – solution strategies

Memory requirements and setup times



www.novicos.de

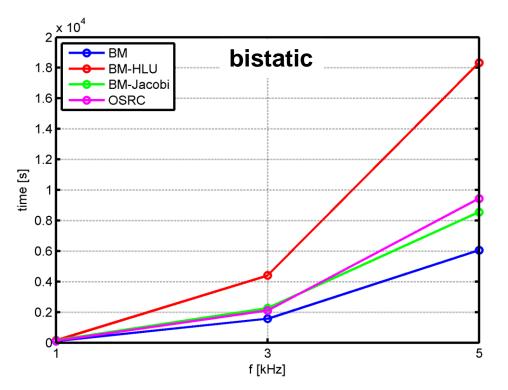
BeTSSi TES simulation – solution strategies Iteration steps and solution time/rhs



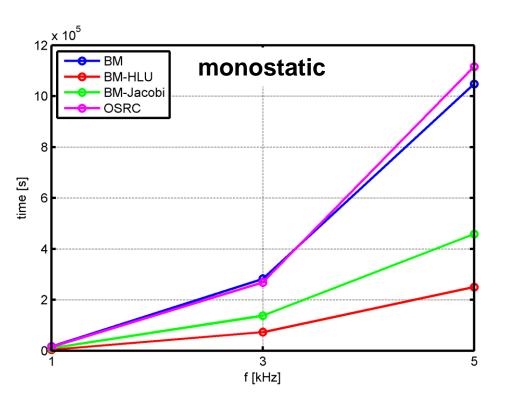
- Solution time/rhs reflects the number of iteration steps except for the OSRC regularisation.
- OSRC slows down due to doubled Matrix-Vector-Product (MVP) costs (separate matrix handling).

BeTSSi TES simulation – solution strategies

Overall computing time: bistatic vs. monostatic

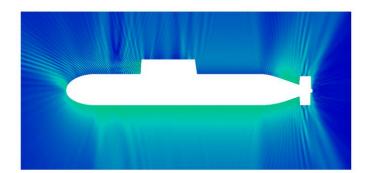


 Time for bistatic TES computation is determined by matrix assembly times.

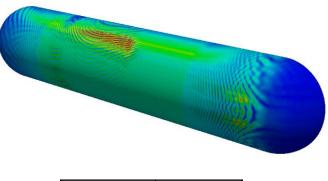


 Overall time for monostatic TES computation is determined by solution time/rhs.

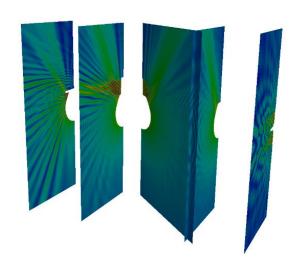
Field point evaluation meshes

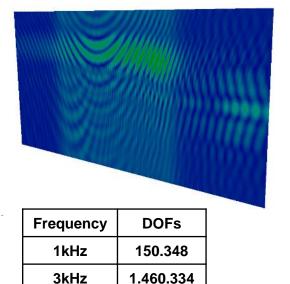


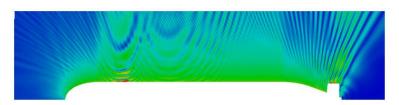
Frequency	DOFs
1kHz	198.051
3kHz	1.766.599



Frequency	DOFs
1kHz	114.767
3kHz	1.122.455







Frequency	DOFs
1kHz	188.143
3kHz	2.428.688

Frequency	DOFs	
1kHz	86.397	
3kHz	907.387	

Total		
Frequency	DOFs	
1kHz	737.706	
3kHz	7.685.463	

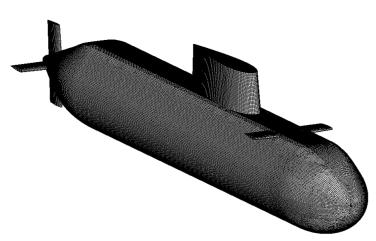
www.novicos.de

October 17-18, 2019

- H-Matrix approach extends the application range of the BEM, well suited for monostatic TES simulations (many rhs).
- Exploiting symmetric surfaces reduces setup costs for H-matrices in the same way as for the standard BEM.
- OSRC preconditioning effectively reduces the number of iteration steps for the TES simulation, but suffers from doubled MVP costs.
- Efficient field point evaluation by H-Matrix approach provides deeper insights into the radiation properties.
- BEM system matrix structure can be exploited for multiple objects of the same kind.

BeTSSi TES with Fast BEM techniques Outlook

- Memory and time reduction
 - H^2 -Matrix, DH^2 -Matrix
 - \rightarrow also applicable for field point evaluation
- Improved parallelisation ((D)H²-Matrix)
 - OpenMP, MPI, GPU
- Solution costs
 - Butterfly algorithms



Frequency	n (DOFs)	k	ka	
1kHz	115.738	4.2	252	H-Mat
3kHz	893.140	12.6	756	H-Mat
5kHz	1.980.562	20.9	1254	H-Mat
10kHz	7.922.248	41.9	2514	H ² -Mat
20kHz	31.688.992	83.8	5028	DH ² -Mat
30kHz	71.658.074	125.7	7542	DH ² -Mat?

Thank you for your attention.



October 17-18, 2019

21